Data Needs and Challenges of Quantum Dot Devices Automation: Workshop Report

Kavli Affiliate: Eliska Greplova | First 5 Authors: Justyna P. Zwolak, Jacob M. Taylor, Reed Andrews, Jared Benson, Garnett Bryant | Summary: Gate-defined quantum dots are a promising candidate system to realize scalable, coupled qubit systems and serve as a fundamental building block for quantum computers. However, present-day quantum dot devices suffer from imperfections that […]


Continue.. Data Needs and Challenges of Quantum Dot Devices Automation: Workshop Report

Data Needs and Challenges of Quantum Dot Devices Automation: Workshop Report

Kavli Affiliate: Eliska Greplova | First 5 Authors: Justyna P. Zwolak, Jacob M. Taylor, Reed Andrews, Jared Benson, Garnett Bryant | Summary: Gate-defined quantum dots are a promising candidate system to realize scalable, coupled qubit systems and serve as a fundamental building block for quantum computers. However, present-day quantum dot devices suffer from imperfections that […]


Continue.. Data Needs and Challenges of Quantum Dot Devices Automation: Workshop Report

Data needs and challenges for quantum dot devices automation

Kavli Affiliate: Eliska Greplova | First 5 Authors: Justyna P. Zwolak, Jacob M. Taylor, Reed W. Andrews, Jared Benson, Garnett W. Bryant | Summary: Gate-defined quantum dots are a promising candidate system for realizing scalable, coupled qubit systems and serving as a fundamental building block for quantum computers. However, present-day quantum dot devices suffer from […]


Continue.. Data needs and challenges for quantum dot devices automation

Quasi-Probabilistic Readout Correction of Mid-Circuit Measurements for Adaptive Feedback via Measurement Randomized Compiling

Kavli Affiliate: Irfan Siddiqi | First 5 Authors: Akel Hashim, Arnaud Carignan-Dugas, Larry Chen, Christian Juenger, Neelay Fruitwala | Summary: Quantum measurements are a fundamental component of quantum computing. However, on modern-day quantum computers, measurements can be more error prone than quantum gates, and are susceptible to non-unital errors as well as non-local correlations due […]


Continue.. Quasi-Probabilistic Readout Correction of Mid-Circuit Measurements for Adaptive Feedback via Measurement Randomized Compiling

Quasi-Probabilistic Readout Correction of Mid-Circuit Measurements for Adaptive Feedback via Measurement Randomized Compiling

Kavli Affiliate: Irfan Siddiqi | First 5 Authors: Akel Hashim, Arnaud Carignan-Dugas, Larry Chen, Christian Juenger, Neelay Fruitwala | Summary: Quantum measurements are a fundamental component of quantum computing. However, on modern-day quantum computers, measurements can be more error prone than quantum gates, and are susceptible to non-unital errors as well as non-local correlations due […]


Continue.. Quasi-Probabilistic Readout Correction of Mid-Circuit Measurements for Adaptive Feedback via Measurement Randomized Compiling

Quasi-Probabilistic Readout Correction of Mid-Circuit Measurements for Adaptive Feedback via Measurement Randomized Compiling

Kavli Affiliate: Irfan Siddiqi | First 5 Authors: Akel Hashim, Arnaud Carignan-Dugas, Larry Chen, Christian Juenger, Neelay Fruitwala | Summary: Quantum measurements are a fundamental component of quantum computing. However, on modern-day quantum computers, measurements can be more error prone than quantum gates, and are susceptible to nonunital errors as well as non-local correlations due […]


Continue.. Quasi-Probabilistic Readout Correction of Mid-Circuit Measurements for Adaptive Feedback via Measurement Randomized Compiling

Quasi-Probabilistic Readout Correction of Mid-Circuit Measurements for Adaptive Feedback via Measurement Randomized Compiling

Kavli Affiliate: Irfan Siddiqi | First 5 Authors: Akel Hashim, Arnaud Carignan-Dugas, Larry Chen, Christian Juenger, Neelay Fruitwala | Summary: Quantum measurements are a fundamental component of quantum computing. However, on modern-day quantum computers, measurements can be more error prone than quantum gates, and are susceptible to non-unital errors as well as non-local correlations due […]


Continue.. Quasi-Probabilistic Readout Correction of Mid-Circuit Measurements for Adaptive Feedback via Measurement Randomized Compiling

Real-time Neural Network Inference on Extremely Weak Devices: Agile Offloading with Explainable AI

Kavli Affiliate: Wei Gao | First 5 Authors: Kai Huang, Wei Gao, , , | Summary: With the wide adoption of AI applications, there is a pressing need of enabling real-time neural network (NN) inference on small embedded devices, but deploying NNs and achieving high performance of NN inference on these small devices is challenging […]


Continue.. Real-time Neural Network Inference on Extremely Weak Devices: Agile Offloading with Explainable AI

ElasticTrainer: Speeding Up On-Device Training with Runtime Elastic Tensor Selection

Kavli Affiliate: Wei Gao | First 5 Authors: Kai Huang, Boyuan Yang, Wei Gao, , | Summary: On-device training is essential for neural networks (NNs) to continuously adapt to new online data, but can be time-consuming due to the device’s limited computing power. To speed up on-device training, existing schemes select trainable NN portion offline […]


Continue.. ElasticTrainer: Speeding Up On-Device Training with Runtime Elastic Tensor Selection

Quantum entanglement between optical and microwave photonic qubits

Kavli Affiliate: Oskar Painter | First 5 Authors: Srujan Meesala, David Lake, Steven Wood, Piero Chiappina, Changchun Zhong | Summary: Entanglement is an extraordinary feature of quantum mechanics. Sources of entangled optical photons were essential to test the foundations of quantum physics through violations of Bell’s inequalities. More recently, entangled many-body states have been realized […]


Continue.. Quantum entanglement between optical and microwave photonic qubits