Perm: A Parametric Representation for Multi-Style 3D Hair Modeling

Kavli Affiliate: Yi Zhou | First 5 Authors: Chengan He, Xin Sun, Zhixin Shu, Fujun Luan, Sören Pirk | Summary: We present Perm, a learned parametric model of human 3D hair designed to facilitate various hair-related applications. Unlike previous work that jointly models the global hair shape and local strand details, we propose to disentangle […]


Continue.. Perm: A Parametric Representation for Multi-Style 3D Hair Modeling

Perm: A Parametric Representation for Multi-Style 3D Hair Modeling

Kavli Affiliate: Yi Zhou | First 5 Authors: Chengan He, Xin Sun, Zhixin Shu, Fujun Luan, Sören Pirk | Summary: We present Perm, a learned parametric model of human 3D hair designed to facilitate various hair-related applications. Unlike previous work that jointly models the global hair shape and local strand details, we propose to disentangle […]


Continue.. Perm: A Parametric Representation for Multi-Style 3D Hair Modeling

Model-independent Test of the Cosmic Anisotropy with Inverse Distance Ladder

Kavli Affiliate: Ke Wang | First 5 Authors: Zong-Fan Yang, Da-Wei Yao, Ke Wang, , | Summary: The Universe with the cosmic anisotropy will have a preferred direction of expansion. Therefore, reconstructing the expansion history by Gaussian Process (GP) can be used to probe the cosmic anisotropy model-independently. In this paper, for the luminosity distance […]


Continue.. Model-independent Test of the Cosmic Anisotropy with Inverse Distance Ladder

Global Well-posedness for Incompressible Hookean Elastodynamics in the Critical Besov Spaces

Kavli Affiliate: Yi Zhou | First 5 Authors: Zexian Zhang, Yi Zhou, , , | Summary: We identify the wave maps type nonlinearities of incompressible Hookean elastodynamics euqations in Lagerangian coordinates, and iterate them in the adapted $U^2$-type spaces to prove the small data global well-posedness in the critical Besov space $dot{B}^{frac{n}{2}+1}_{2,1}(mathbb{R}^n)times dot{B}^{frac{n}{2}}_{2,1}(mathbb{R}^n) (nge 2)$. […]


Continue.. Global Well-posedness for Incompressible Hookean Elastodynamics in the Critical Besov Spaces

Controlling structure and interfacial interaction of monolayer TaSe2 on bilayer graphene

Kavli Affiliate: Michael F. Crommie | First 5 Authors: Hyobeom Lee, Hayoon Im, Byoung Ki Choi, Kyoungree Park, Yi Chen | Summary: Tunability of interfacial effects between two-dimensional (2D) crystals is crucial not only for understanding the intrinsic properties of each system, but also for designing electronic devices based on ultra-thin heterostructures. A prerequisite of […]


Continue.. Controlling structure and interfacial interaction of monolayer TaSe2 on bilayer graphene

Exploring the Quantum Universe: Pathways to Innovation and Discovery in Particle Physics

Kavli Affiliate: Hitoshi Murayama | First 5 Authors: Shoji Asai, Amalia Ballarino, Tulika Bose, Kyle Cranmer, Francis-Yan Cyr-Racine | Summary: This is the report from the 2023 Particle Physics Project Prioritization Panel (P5) approved by High Energy Physics Advisory Panel (HEPAP) on December 8, 2023. The final version was made public on May 8, 2024 […]


Continue.. Exploring the Quantum Universe: Pathways to Innovation and Discovery in Particle Physics

Exploring the Quantum Universe: Pathways to Innovation and Discovery in Particle Physics

Kavli Affiliate: Hitoshi Murayama | First 5 Authors: Shoji Asai, Amalia Ballarino, Tulika Bose, Kyle Cranmer, Francis-Yan Cyr-Racine | Summary: This is the report from the 2023 Particle Physics Project Prioritization Panel (P5) approved by High Energy Physics Advisory Panel (HEPAP) on December 8, 2023. The final version was made public on May 8, 2024 […]


Continue.. Exploring the Quantum Universe: Pathways to Innovation and Discovery in Particle Physics

Exploring the Quantum Universe: Pathways to Innovation and Discovery in Particle Physics

Kavli Affiliate: Hitoshi Murayama | First 5 Authors: Shoji Asai, Amalia Ballarino, Tulika Bose, Kyle Cranmer, Francis-Yan Cyr-Racine | Summary: This is the report from the 2023 Particle Physics Project Prioritization Panel (P5) approved by High Energy Physics Advisory Panel (HEPAP) on December 8, 2023. The final version was made public on May 8, 2024 […]


Continue.. Exploring the Quantum Universe: Pathways to Innovation and Discovery in Particle Physics

ReactCA: A Cellular Automaton for Predicting Phase Evolution in Solid-State Reactions

Kavli Affiliate: Kristin A. Persson | First 5 Authors: Max C. Gallant, Matthew J. McDermott, Bryant Li, Kristin A. Persson, | Summary: New computational tools for solid-state synthesis recipe design are needed in order to accelerate the experimental realization of novel functional materials proposed by high-throughput materials discovery workflows. This work contributes a cellular automaton […]


Continue.. ReactCA: A Cellular Automaton for Predicting Phase Evolution in Solid-State Reactions

Microwave-Optical Entanglement from Pulse-pumped Electro-optomechanics

Kavli Affiliate: Oskar Painter | First 5 Authors: Changchun Zhong, Fangxin Li, Srujan Meesala, Steven Wood, David Lake | Summary: Entangling microwave and optical photons is one of the promising ways to realize quantum transduction through quantum teleportation. This paper investigates the entanglement of microwave-optical photon pairs generated from an electro-optomechanical system driven by a […]


Continue.. Microwave-Optical Entanglement from Pulse-pumped Electro-optomechanics