The HCN1 hyperpolarization-activated cyclic nucleotide-gated channel enhances evoked GABA release from parvalbumin positive interneurons

Kavli Affiliate: Steven Siegelbaum

| Authors: Tobias Bock, Eric W Buss, Olivia M Lofaro, Felix W Leroy, Bina Santoro and Steven A Siegelbaum

| Summary:

Abstract Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels generate the cationic Ih current in neurons and regulate the excitability of neuronal networks. The function of HCN channels depends, in part, on their subcellular localization. Of the four HCN isoforms (HCN1-4), HCN1 is strongly expressed in the dendrites of pyramidal neurons in hippocampal area CA1 but also in presynaptic terminals of parvalbumin-positive interneurons (PV+ INs), which provide strong inhibitory control over hippocampal activity. Yet, little is known about how HCN1 channels in these cells regulate the evoked release of the inhibitory transmitter GABA from their axon terminals. Here, we used several genetic, optogenetic, electrophysiological and imaging techniques to investigate how the electrophysiological properties of PV+ INs are regulated by HCN1, including how HCN1 activity at presynaptic terminals regulates the release of GABA onto pyramidal neurons (PNs) in CA1. We found that application of HCN1 pharmacological blockers reduced the amplitude of the inhibitory postsynaptic potential recorded from CA1 pyramidal neurons in response to selective optogenetic stimulation of PV+ INs. Homozygous HCN1-/- knockout mice also show reduced IPSCs in postsynaptic cells. Finally, two-photon imaging using genetically encoded fluorescent calcium indicators revealed that HCN1 blockers reduced the probability that an extracellular electrical stimulating pulse evoked a Ca2+ response in individual PV+ IN presynaptic boutons. Taken together, our results show that HCN1 channels in the axon terminals of PV+ interneurons facilitate GABAergic transmission in the hippocampal CA1 region. Competing Interest Statement The authors have declared no competing interest.

Read More