A Weakly Supervised Propagation Model for Rumor Verification and Stance Detection with Multiple Instance Learning

Kavli Affiliate: Wei Gao

| First 5 Authors: Ruichao Yang, Jing Ma, Hongzhan Lin, Wei Gao,

| Summary:

The diffusion of rumors on microblogs generally follows a propagation tree
structure, that provides valuable clues on how an original message is
transmitted and responded by users over time. Recent studies reveal that rumor
detection and stance detection are two different but relevant tasks which can
jointly enhance each other, e.g., rumors can be debunked by cross-checking the
stances conveyed by their relevant microblog posts, and stances are also
conditioned on the nature of the rumor. However, most stance detection methods
require enormous post-level stance labels for training, which are
labor-intensive given a large number of posts. Enlightened by Multiple Instance
Learning (MIL) scheme, we first represent the diffusion of claims with
bottom-up and top-down trees, then propose two tree-structured weakly
supervised frameworks to jointly classify rumors and stances, where only the
bag-level labels concerning claim’s veracity are needed. Specifically, we
convert the multi-class problem into a multiple MIL-based binary classification
problem where each binary model focuses on differentiating a target stance or
rumor type and other types. Finally, we propose a hierarchical attention
mechanism to aggregate the binary predictions, including (1) a bottom-up or
top-down tree attention layer to aggregate binary stances into binary veracity;
and (2) a discriminative attention layer to aggregate the binary class into
finer-grained classes. Extensive experiments conducted on three Twitter-based
datasets demonstrate promising performance of our model on both claim-level
rumor detection and post-level stance classification compared with
state-of-the-art methods.

| Search Query: ArXiv Query: search_query=au:”Wei Gao”&id_list=&start=0&max_results=10

Read More