Functional connectome through the human life span

Kavli Affiliate: Xiaoqin Wang

| Authors: Lianglong Sun, Tengda Zhao, Xinyuan Liang, Mingrui Xia, Qiongling Li, Xuhong Liao, Gaolang Gong, Qian Wang, Chenxuan Pang, Qian Yu, Yanchao Bi, Pindong Chen, Rui Chen, Yuan Chen, Taolin Chen, Jingliang Cheng, Yuqi Cheng, Zaixu Cui, Zhengjia Dai, Yao Deng, Yuyin Ding, Qi Dong, Dingna Duan, Jia-Hong Gao, Qiyong Gong, Ying Han, Zaizhu Han, Chu-Chung Huang, Ruiwang Huang, Lingjiang Li, Ching-Po Lin, Qixiang Lin, Bangshan Liu, Chao Liu, Ningyu Liu, Yong Liu, Jing Lu, Leilei Ma, Weiwei Men, Shaozheng Qin, Jiang Qiu, Shijun Qiu, Tianmei Si, Shuping Tan, Yanqing Tang, Sha Tao, Dawei Wang, Fei Wang, Jiali Wang, Pan Wang, Xiaoqin Wang, Yanpei Wang, Dongtao Wei, Yankun Wu, Peng Xie, Xiufeng Xu, Yuehua Xu, Zhilei Xu, Liyuan Yang, Zilong Zeng, Haibo Zhang, Xi Zhang, Gai Zhao, Yanting Zheng, Suyu Zhong, Alzheimer’s Disease Neuroimaging Initiative, Cam-CAN, Devel oping Human Connectome Project, DIDA-MDD Working Group, Multi-center Alzheimer Disease Imaging Consortium, NSPN and Yong He

| Summary:

The functional connectome of the human brain represents the fundamental network architecture of neural activity, but its normative growth trajectory over the life course remains unknown. Here, we aggregate the largest, quality-controlled multimodal neuroimaging dataset across 119 global sites, including 33,809 task-free fMRI and structural MRI scans of 32,328 individuals aged from 32 postmenstrual weeks to 80 years old. The lifespan growth charts of the connectome are quantified at the whole cortex, system, and regional levels using generalized additive models for location, scale, and shape. We find critical inflection points in the nonlinear growth trajectories of the whole-brain functional connectome, notably peaking in the fourth decade of life. After establishing the first fine-grained, lifespan-spanning suite of system-level brain atlases, we generate person-specific parcellation maps and further elucidate distinct timelines of maturation for functional segregation within various subsystems. We identify a spatiotemporal gradient axis that governs the life-course growth of regional connectivity, transitioning from primary sensory cortices to higher-order association regions. Using the connectome-based normative model, we demonstrate substantial individual heterogeneities at the network level in patients with autism spectrum disorder and patients with major depressive disorder, respectively. Our findings shed light on the functional connectome’s life-course evolution, serving as normative references for understanding network growth principles of the human brain and assessing individual variations of patients with neuropsychiatric conditions.

Read More