Measurements of the branching fractions of $Ξ_{c}^{0}toΞ^{0}π^{0}$, $Ξ_{c}^{0}toΞ^{0}η$, and $Ξ_{c}^{0}toΞ^{0}η^{prime}$ and asymmetry parameter of $Ξ_{c}^{0}toΞ^{0}π^{0}$

Kavli Affiliate: T. Higuchi

| First 5 Authors: Belle, Belle II Collaborations, :, I. Adachi, L. Aggarwal

| Summary:

We present a study of $Xi_{c}^{0}toXi^{0}pi^{0}$,
$Xi_{c}^{0}toXi^{0}eta$, and $Xi_{c}^{0}toXi^{0}eta^{prime}$ decays
using the Belle and Belle~II data samples, which have integrated luminosities
of 980~$mathrm{fb}^{-1}$ and 426~$mathrm{fb}^{-1}$, respectively. We measure
the following relative branching fractions $${cal
B}(Xi_{c}^{0}toXi^{0}pi^{0})/{cal B}(Xi_{c}^{0}toXi^{-}pi^{+}) = 0.48
pm 0.02 ({rm stat}) pm 0.03 ({rm syst}) ,$$ $${cal
B}(Xi_{c}^{0}toXi^{0}eta)/{cal B}(Xi_{c}^{0}toXi^{-}pi^{+}) = 0.11 pm
0.01 ({rm stat}) pm 0.01 ({rm syst}) ,$$ $${cal
B}(Xi_{c}^{0}toXi^{0}eta^{prime})/{cal B}(Xi_{c}^{0}toXi^{-}pi^{+}) =
0.08 pm 0.02 ({rm stat}) pm 0.01 ({rm syst}) $$ for the first time, where
the uncertainties are statistical ($rm stat$) and systematic ($rm syst$). By
multiplying by the branching fraction of the normalization mode, ${mathcal
B}(Xi_{c}^{0}toXi^{-}pi^{+})$, we obtain the following absolute branching
fraction results $(6.9 pm 0.3 ({rm stat}) pm 0.5 ({rm syst}) pm 1.3 ({rm
norm})) times 10^{-3}$, $(1.6 pm 0.2 ({rm stat}) pm 0.2 ({rm syst}) pm
0.3 ({rm norm})) times 10^{-3}$, and $(1.2 pm 0.3 ({rm stat}) pm 0.1 ({rm
syst}) pm 0.2 ({rm norm})) times 10^{-3}$, for $Xi_{c}^{0}$ decays to
$Xi^{0}pi^{0}$, $Xi^{0}eta$, and $Xi^{0}eta^{prime}$ final states,
respectively. The third errors are from the uncertainty on ${mathcal
B}(Xi_{c}^{0}toXi^{-}pi^{+})$. The asymmetry parameter for
$Xi_{c}^{0}toXi^{0}pi^{0}$ is measured to be
$alpha(Xi_{c}^{0}toXi^{0}pi^{0}) = -0.90pm0.15({rm stat})pm0.23({rm
syst})$.

| Search Query: ArXiv Query: search_query=au:”T. Higuchi”&id_list=&start=0&max_results=3

Read More