behaviorMate: An Intranet of Things Approach for Adaptable Control of Behavioral and Navigation-Based Experiments

Kavli Affiliate: Attila Losonczy

| Authors: Kyu Sang Han, Inbal B Sander, Jacqueline Kumer, Eric Preston Resnick, Clare Booth, Bartholomew Starich, Jeremy Walston, Ashley L Kiemen, Sashank Reddy, Corrine Joshu, Joel Sunshine, Denis Wirtz and Pei-Hsun Wu

| Summary:

Investigators conducting behavioral experiments often need precise control over the timing of the delivery of stimuli to subjects and to collect the precise times of the subsequent behavioral responses. Furthermore, investigators want fine-tuned control over how various multi-modal cues are presented. behaviorMate takes an “Intranet of Things” approach, using a networked system of hardware and software components for achieving these goals. The system outputs a file with integrated timestamp-event pairs that investigators can then format and process using their own analysis pipelines. We present an overview of the electronic components and GUI application that make up behaviorMate as well as mechanical designs for compatible experimental rigs to provide the reader with the ability to set up their own system. A wide variety of paradigms are supported, including goal-oriented learning, random foraging, and context switching. We demonstrate behaviorMate’s utility and reliability with a range of use cases from several published studies and benchmark tests. Finally, we present experimental validation demonstrating different modalities of hippocampal place field studies. Both treadmill with burlap belt and virtual reality with running wheel paradigms were performed to confirm the efficacy and flexibility of the approach. Previous solutions rely on proprietary systems that may have large upfront costs or present frameworks that require customized software to be developed. behaviorMate uses open-source software and a flexible configuration system to mitigate both concerns. behaviorMate has a proven record for head-fixed imaging experiments and could be easily adopted for task control in a variety of experimental situations.

Read More