Three-dimensional reconstruction of fetal rhesus macaque kidneys at single-cell resolution reveals complex inter-relation of structures

Kavli Affiliate: Denis Wirtz

| Authors: Lucie Dequiedt, Andre Forjaz, Jamie O. Lo, Owen J McCarty, Pei-Hsun Wu, Avi Rosenberg, Denis Wirtz and Ashley L. Kiemen

| Summary:

Kidneys are among the most structurally complex organs in the body. Their architecture is critical to ensure proper function and is often impacted by diseases such as diabetes and hypertension. Understanding the spatial interplay between the different structures of the nephron and renal vasculature is crucial. Recent efforts have demonstrated the value of three-dimensional (3D) imaging in revealing new insights into the various components of the kidney; however, these studies used antibodies or autofluorescence to detect structures and so were limited in their ability to compare the many subtle structures of the kidney at once. Here, through 3D reconstruction of fetal rhesus macaque kidneys at cellular resolution, we demonstrate the power of deep learning in exhaustively labelling seventeen microstructures of the kidney. Using these tissue maps, we interrogate the spatial distribution and spatial correlation of the glomeruli, renal arteries, and the nephron. This work demonstrates the power of deep learning applied to 3D tissue images to improve our ability to compare many microanatomical structures at once, paving the way for further works investigating renal pathologies.

Read More