Pangenomics provides insights into the role of synanthropy in barn swallow evolution

Kavli Affiliate: Erich Jarvis

| Authors: Simona Secomandi, Guido Roberto Gallo, Marcella Sozzoni, Alessio Iannucci, Elena Galati, Linelle Abueg, Jennifer Balacco, Manuela Caprioli, William Chow, Claudio Ciofi, Joanna Collins, Olivier Fedrigo, Luca Ferretti, Arkarachai Fungtammasan, Bettina Haase, Kerstin Howe, Woori Kwak, Gianluca Lombardo, Patrick Masterson, Graziella Messina, Anders Pape Møller, Jacquelyn Mountcastle, Timothy A. Mousseau, Joan Ferrer-Obiol, Anna Olivieri, Arang Rhie, Diego Rubolini, Marielle Saclier, Roscoe Stanyon, David Stucki, Françoise Thibaud-Nissen, James Torrance, Antonio Torroni, Kristina Weber, Roberto Ambrosini, Andrea Bonisoli-Alquati, Erich D. Jarvis, Luca Gianfranceschi and Giulio Formenti

| Summary:

Insights into the evolution of non-model organisms are often limited by the lack of reference genomes. As part of the Vertebrate Genomes Project, we present a new reference genome and a pangenome produced with High-Fidelity long reads for the barn swallow Hirundo rustica. We then generated a reference-free multialignment with other bird genomes to identify genes under selection. Conservation analyses pointed at genes enriched for transcriptional regulation and neurodevelopment. The most conserved gene is CAMK2N2, with a potential role in fear memory formation. In addition, using all publicly available data, we generated a comprehensive catalogue of genetic markers. Genome-wide linkage disequilibrium scans identified potential selection signatures at multiple loci. The top candidate region comprises several genes and includes BDNF, a gene involved in stress response, fear memory formation, and tameness. We propose that the strict association with humans in this species is linked with the evolution of pathways typically under selection in domesticated taxa.

Read More

Leave a Reply