CAFE: Learning to Condense Dataset by Aligning Features

Kavli Affiliate: Zheng Zhu

| First 5 Authors: Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang

| Summary:

Dataset condensation aims at reducing the network training effort through
condensing a cumbersome training set into a compact synthetic one.
State-of-the-art approaches largely rely on learning the synthetic data by
matching the gradients between the real and synthetic data batches. Despite the
intuitive motivation and promising results, such gradient-based methods, by
nature, easily overfit to a biased set of samples that produce dominant
gradients, and thus lack global supervision of data distribution. In this
paper, we propose a novel scheme to Condense dataset by Aligning FEatures
(CAFE), which explicitly attempts to preserve the real-feature distribution as
well as the discriminant power of the resulting synthetic set, lending itself
to strong generalization capability to various architectures. At the heart of
our approach is an effective strategy to align features from the real and
synthetic data across various scales, while accounting for the classification
of real samples. Our scheme is further backed up by a novel dynamic bi-level
optimization, which adaptively adjusts parameter updates to prevent
over-/under-fitting. We validate the proposed CAFE across various datasets, and
demonstrate that it generally outperforms the state of the art: on the SVHN
dataset, for example, the performance gain is up to 11%. Extensive experiments
and analyses verify the effectiveness and necessity of proposed designs.

| Search Query: ArXiv Query: search_query=au:”Zheng Zhu”&id_list=&start=0&max_results=10

Read More

Leave a Reply