Performance of Superconducting Resonators Suspended on SiN Membranes

Kavli Affiliate: Feng Wang | First 5 Authors: Trevor Chistolini, Kyunghoon Lee, Archan Banerjee, Mohammed Alghadeer, Christian Jünger | Summary: Correlated errors in superconducting circuits due to nonequilibrium quasiparticles are a notable concern in efforts to achieve fault tolerant quantum computing. The propagation of quasiparticles causing these correlated errors can potentially be mediated by phonons […]


Continue.. Performance of Superconducting Resonators Suspended on SiN Membranes

Microscopic origin of twist-dependent electron transfer rate in bilayer graphene

Kavli Affiliate: David T. Limmer | First 5 Authors: Leonardo Coello Escalante, David T. Limmer, , , | Summary: Using molecular simulation and continuum dielectric theory, we consider how electrochemical kinetics are modulated as a function of twist angle in bilayer graphene electrodes. By establishing an effective connection between twist angle and the screening length […]


Continue.. Microscopic origin of twist-dependent electron transfer rate in bilayer graphene

Microscopic origin of twist-dependent electron transfer rate in bilayer graphene

Kavli Affiliate: David T. Limmer | First 5 Authors: Leonardo Coello Escalante, David T. Limmer, , , | Summary: Using molecular simulation and continuum dielectric theory, we consider how electrochemical kinetics are modulated as a function of twist angle in bilayer graphene electrodes. By establishing an effective connection between twist angle and the screening length […]


Continue.. Microscopic origin of twist-dependent electron transfer rate in bilayer graphene

Microscopic origin of twist-dependent electron transfer rate in bilayer graphene

Kavli Affiliate: David T. Limmer | First 5 Authors: Leonardo Coello Escalante, David T. Limmer, , , | Summary: Using molecular simulation and continuum dielectric theory, we consider how electrochemical kinetics are modulated by twist angle in bilayer graphene electrodes. By establishing a connection between twist angle and the screening length of charge carriers within […]


Continue.. Microscopic origin of twist-dependent electron transfer rate in bilayer graphene

Electronic and Optical Excitations in van der Waals Materials from a Non-Empirical Wannier-Localized Optimally-Tuned Screened Range-Separated Hybrid Functional

Kavli Affiliate: Jeffrey B. Neaton | First 5 Authors: María Camarasa-Gómez, Stephen E. Gant, Guy Ohad, Jeffrey B. Neaton, Ashwin Ramasubramanian | Summary: Accurate prediction of electronic and optical excitations in van der Waals (vdW) materials is a long-standing challenge for density functional theory. The recently proposed Wannier-localized optimally-tuned screened range-separated hybrid (WOT-SRSH) functional has […]


Continue.. Electronic and Optical Excitations in van der Waals Materials from a Non-Empirical Wannier-Localized Optimally-Tuned Screened Range-Separated Hybrid Functional

Colloidal dispersions of sterically and electrostatically stabilized PbS quantum dots: the effect of stabilization mechanism on structure factors, second virial coefficients, and film-forming properties

Kavli Affiliate: Naomi S. Ginsberg | First 5 Authors: Ahhyun Jeong, Josh Portner, Christian P. N. Tanner, Justin C. Ondry, Chenkun Zhou | Summary: Electrostatically stabilized nanocrystals (NCs) and, in particular, quantum dots (QDs) hold promise for forming strongly coupled superlattices due to their compact and electronically conductive surface ligands. However, studies on the colloidal […]


Continue.. Colloidal dispersions of sterically and electrostatically stabilized PbS quantum dots: the effect of stabilization mechanism on structure factors, second virial coefficients, and film-forming properties

Suppressed self-diffusion of nanoscale constituents of a complex liquid

Kavli Affiliate: Naomi S. Ginsberg | First 5 Authors: Christian P. N. Tanner, Vivian R. K. Wall, Mumtaz Gababa, Joshua Portner, Ahhyun Jeong | Summary: The ability to understand and ultimately control the transformations and properties of various nanoscale systems, from proteins to synthetic nanomaterial assemblies, hinges on the ability to directly elucidate their dynamics […]


Continue.. Suppressed self-diffusion of nanoscale constituents of a complex liquid

A tale of two localizations: coexistence of flat bands and Anderson localization in a photonics-inspired amorphous system

Kavli Affiliate: Joel E. Moore | First 5 Authors: Elizabeth J. Dresselhaus, Alexander Avdoshkin, Zhetao Jia, Matteo Secli, Boubacar Kante | Summary: Emerging experimental platforms use amorphousness, a constrained form of disorder, to tailor meta-material properties. We study localization under this type of disorder in a class of $2D$ models generalizing recent experiments on photonic […]


Continue.. A tale of two localizations: coexistence of flat bands and Anderson localization in a photonics-inspired amorphous system

Enhancing nanocrystal superlattice self-assembly near a metastable liquid binodal

Kavli Affiliate: David T. Limmer | First 5 Authors: Christian P. N. Tanner, Vivian R. K. Wall, Joshua Portner, Ahhyun Jeong, Avishek Das | Summary: Bottom-up assembly of nanocrystals (NCs) into ordered arrays, or superlattices (SLs), is a promising route to design materials with new functionalities, but the degree of control over assembly into functional […]


Continue.. Enhancing nanocrystal superlattice self-assembly near a metastable liquid binodal

Enhancing nanocrystal superlattice self-assembly near a metastable liquid binodal

Kavli Affiliate: Naomi S. Ginsberg | First 5 Authors: Christian P. N. Tanner, Vivian R. K. Wall, Joshua Portner, Ahhyun Jeong, Avishek Das | Summary: Bottom-up assembly of nanocrystals (NCs) into ordered arrays, or superlattices (SLs), is a promising route to design materials with new functionalities, but the degree of control over assembly into functional […]


Continue.. Enhancing nanocrystal superlattice self-assembly near a metastable liquid binodal