Kavli Affiliate: Michael W. Young
| Authors: Waruna Thotamune, Sithurandi Ubeysinghe, Kendra Kumar Shrestha, Mahmoud Elhusse Mostafa, Michael C Young and Ajith Karunarathne
| Summary:
Beta-adrenergic receptors (βARs) are G protein-coupled receptors (GPCRs) that mediate catecholamine-induced stress responses, such as heart rate increase and bronchodilation. In addition to signals from the cell surface, βARs also broadcast non-canonical signaling activities from the cell interior membranes (endomembranes). Dysregulation of these receptor pathways underlies severe pathological conditions. Excessive βAR stimulation is linked to cardiac hypertrophy, leading to heart failure, while impaired stimulation causes compromised fight or flight stress responses and homeostasis. In addition to plasma membrane βAR, emerging evidence indicates potential pathological implications of deeper endomembrane βARs, such as inducing cardiomyocyte hypertrophy and apoptosis, underlying heart failure. However, the lack of approaches to control their signaling in subcellular compartments exclusively has impeded linking endomembrane βAR signaling with pathology. Informed by the β1AR-catecholamine interactions, we engineered an efficiently photo-labile, protected hydroxy β1AR pro-ligand (OptoIso) to trigger βAR signaling at the cell surface, as well as exclusive endomembrane regions upon blue light stimulation. Not only does OptoIso undergo blue light deprotection in seconds, but it also efficiently enters cells and allows examination of G protein heterotrimer activation exclusively at endomembranes. In addition to its application in the optical interrogation of βARs in unmodified cells, given its ability to control deep organelle βAR signaling, OptoIso will be a valuable experimental tool.