Kavli Affiliate: Yi Zhou
| First 5 Authors: Sheng Wang, Yi Zhou, , ,
| Summary:
In the paper by Klainerman, Rodnianski and Tao
cite{Klainerman-Rodnianski-Tao}, they give a physical space proof to a
classical result of Klainerman and Machedon cite{Klainerman-Machedon} for the
bilinear space-time estimates of null forms. In this paper, we shall give an
alternative and very simple physical space proof of the same bilinear estimates
by applying div-curl type lemma of Zhou cite{Zhou} and Wang-Zhou
cite{Wang-Zhou-1}, cite{Wang-Zhou-2}. As far as we known, the later
development of wave maps cite{Sterbenz-1}, cite{Sterbenz-2}, cite{Tao-1},
cite{Tao-2}, cite{Tataru-1}, cite{Tataru-2}, and the proof of bounded
curvature conjecture cite{Klainerman-Rodnianski-Szeftel-1},
cite{Klainerman-Rodnianski-Szeftel-2} rely on basic idea of Klainerman and
Machedon cite{Klainerman-Machedon} as well as Klainerman, Rodnianski and Tao
cite{Klainerman-Rodnianski-Tao}.
| Search Query: ArXiv Query: search_query=au:”Yi Zhou”&id_list=&start=0&max_results=3