Kavli Affiliate: Seth Shipman
| Authors: Kazuo Nakamura, Karen Zhang, Mario R Mestre, Matias Rojas-Montero and Seth Shipman
| Summary:
Retrons are bacterial immune systems that protect a bacterial population against phages by killing infected hosts. Retrons typically comprise a reverse transcriptase, a template noncoding RNA that is partially reverse transcribed into RT-DNA, and a toxic effector. The reverse transcriptase, noncoding RNA, and RT-DNA complex sequester the toxic effector until triggered by phage infection, at which point the toxin is released to induce cell death. Due to their ability to produce single-stranded DNA in vivo, retrons have also been engineered to produce donor templates for genome editing in both prokaryotes and eukaryotes. However, the current repertoire of experimentally characterized retrons is limited, with most retrons sourced from clinical and laboratory strains of bacteria. To better understand retron biology and natural diversity, and to expand the current toolbox of retron-based genome editors, we developed a pipeline to isolate retrons and their bacterial hosts from a variety of environmental samples. Here, we present six of these novel retrons, each isolated from a different host bacterium. We characterize the full operon of these retrons and test their ability to defend against a panel of E. coli phages. For two of these retrons, we further unravel their mechanism of defense by identifying the phage genes responsible for triggering abortive infection. Finally, we engineer these retrons for genome editing in E. coli, demonstrating their potential use in a biotechnological application.