Kavli Affiliate: Michael Miller
| Authors: Hannah Mummey, Weston Elison, Katha Korgaonkar, Ruth Elgamel, Parul Kudtarkar, Emily Griffin, Paola Benaglio, Michael Miller, Alokkumar Jha, Jocelyn E Manning Fox, Mark Mccarthy, Sebastian Preissl, Anna L Gloyn, Patrick E Macdonald and Kyle J Gaulton
| Summary:
Physiological variability in pancreatic cell type gene regulation and the impact on diabetes risk is poorly understood. In this study we mapped gene regulation in pancreatic cell types using single cell multiomic (joint RNA-seq and ATAC-seq) profiling in 28 non-diabetic donors in combination with single cell data from 35 non-diabetic donors in the Human Pancreas Analysis Program. We identified widespread associations with age, sex, BMI, and HbA1c, where gene regulatory responses were highly cell type- and phenotype-specific. In beta cells, donor age associated with hypoxia, apoptosis, unfolded protein response, and external signal-dependent transcriptional regulators, while HbA1c associated with inflammatory responses and gender with chromatin organization. We identified 10.8K loci where genetic variants were QTLs for cis regulatory element (cRE) accessibility, including 20% with lineage- or cell type-specific effects which disrupted distinct transcription factor motifs. Type 2 diabetes and glycemic trait associated variants were enriched in both phenotype- and QTL-associated beta cell cREs, whereas type 1 diabetes showed limited enrichment. Variants at 226 diabetes and glycemic trait loci were QTLs in beta and other cell types, including 40 that were statistically colocalized, and annotating target genes of colocalized QTLs revealed genes with putatively novel roles in disease. Our findings reveal diverse responses of pancreatic cell types to phenotype and genotype in physiology, and identify pathways, networks, and genes through which physiology impacts diabetes risk.