Kavli Affiliate: Jeremias Sulam
| Authors: Zhenzhen Wang, Cesar A. Santa-Maria, Aleksander S. Popel and Jeremias Sulam
| Summary:
The tumor microenvironment is widely recognized for its central role in driving cancer progression and influencing prognostic outcomes. Despite extensive research efforts dedicated to characterizing this complex and heterogeneous environment, considerable challenges persist. In this study, we introduce a data-driven approach for identifying patterns of cell organizations in the tumor microenvironment that are associated with patient prognoses. Our methodology relies on the construction of a bi-level graph model: (i) a cellular graph, which models the intricate tumor microenvironment, and (ii) a population graph that captures inter-patient similarities, given their respective cellular graphs, by means of a soft Weisfeiler-Lehman subtree kernel. This systematic integration of information across different scales enables us to identify patient subgroups exhibiting unique prognoses while unveiling tumor microenvironment patterns that characterize them. We demonstrate our approach in a cohort of breast cancer patients, where the identified tumor microenvironment patterns result in a risk stratification system that provides complementary, new information with respect to alternative standards. Our results, which are validated in a completely independent cohort, allow for new insights into the prognostic implications of the breast tumor microenvironment, and this methodology could be applied to other cancer types more generally.