CDCA7 is a hemimethylated DNA adaptor for the nucleosome remodeler HELLS

Kavli Affiliate: Li Zhao

| Authors: Isabel E Wassing, Atsuya Nishiyama, Moeri Hiruta, Qingyuan Jia, Reia Shikimachi, Amika Kikuchi, Keita Sugimura, Xin Hong, Yoshie Chiba, Junhui Peng, Christopher Jenness, Makoto Nakanishi, Li Zhao, Kyohei Arita and Hironori Funabiki

| Summary:

Mutations of the SNF2 family ATPase HELLS and its activator CDCA7 cause immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome, characterized by hypomethylation at heterochromatin. The unique zinc-finger domain, zf-4CXXC_R1, of CDCA7 is widely conserved across eukaryotes but is absent from species that lack HELLS and DNA methyltransferases, implying its specialized relation with methylated DNA. Here we demonstrate that zf-4CXXC_R1 acts as a hemimethylated DNA sensor. The zf-4CXXC_R1 domain of CDCA7 selectively binds to DNA with a hemimethylated CpG, but not unmethylated or fully methylated CpG, and ICF disease mutations eliminated this binding. CDCA7 and HELLS interact via their N-terminal alpha helices, through which HELLS is recruited to hemimethylated DNA. While placement of a hemimethylated CpG within the nucleosome core particle can hinder its recognition by CDCA7, cryo-EM structure analysis of the CDCA7-nucleosome complex suggests that zf-4CXXC_R1 recognizes a hemimethylated CpG in the major groove at linker DNA. Our study provides insights into how the CDCA7-HELLS nucleosome remodeling complex uniquely assists maintenance DNA methylation.

Read More