Kavli Affiliate: Timothy A. Ryan
| Authors: Mukesh Kumar, Justin Knapp, Kallol Gupta and Timothy A Ryan
| Summary:
Recent advances have expanded the role of lipid droplets (LDs) beyond passive lipid storage, implicating their involvement in various metabolic processes across mammalian tissues. Neuronal LDs, long debated in existence, have been identified in several neural structures, raising questions about their contribution to neurodegenerative disorders. Elucidating the specific chemical makeup of these organelles within neurons is critical for understanding their implication in neural pathologies. This study outlines an improved methodology to stimulate and isolate mature LDs from cultured primary neurons, offering insights into their unique lipid-protein composition. Integrating this method with high-throughput techniques may unveil disease-specific alterations in lipid metabolism, providing avenues for potential therapeutic interventions.