Kavli Affiliate: Biao Huang
| First 5 Authors: Jianwei Lin, Jiatai Lin, Cheng Lu, Hao Chen, Huan Lin
| Summary:
Brain tumor segmentation (BTS) in magnetic resonance image (MRI) is crucial
for brain tumor diagnosis, cancer management and research purposes. With the
great success of the ten-year BraTS challenges as well as the advances of CNN
and Transformer algorithms, a lot of outstanding BTS models have been proposed
to tackle the difficulties of BTS in different technical aspects. However,
existing studies hardly consider how to fuse the multi-modality images in a
reasonable manner. In this paper, we leverage the clinical knowledge of how
radiologists diagnose brain tumors from multiple MRI modalities and propose a
clinical knowledge-driven brain tumor segmentation model, called CKD-TransBTS.
Instead of directly concatenating all the modalities, we re-organize the input
modalities by separating them into two groups according to the imaging
principle of MRI. A dual-branch hybrid encoder with the proposed
modality-correlated cross-attention block (MCCA) is designed to extract the
multi-modality image features. The proposed model inherits the strengths from
both Transformer and CNN with the local feature representation ability for
precise lesion boundaries and long-range feature extraction for 3D volumetric
images. To bridge the gap between Transformer and CNN features, we propose a
Trans&CNN Feature Calibration block (TCFC) in the decoder. We compare the
proposed model with five CNN-based models and six transformer-based models on
the BraTS 2021 challenge dataset. Extensive experiments demonstrate that the
proposed model achieves state-of-the-art brain tumor segmentation performance
compared with all the competitors.
| Search Query: ArXiv Query: search_query=au:”Biao Huang”&id_list=&start=0&max_results=10