Kavli Affiliate: Jill Leutgeb
| Authors: Mengni Wang, Li Yuan, Stefan Leutgeb and Jill K. Leutgeb
| Summary:
Mental exploration enables flexible evaluation of potential future choices, guiding decision-making without requiring direct real-world iterations. Although the hippocampus is known to be active while imagining the future, the precise mechanisms that support mental exploration of future choices remain unclear. In the hippocampus, the theta rhythm (4-12 Hz) is prevalent during movement and supports memory coding during real-world exploration by organizing neuronal activity patterns into short virtual path segments (theta sequences) around the rat’s location. We observed these theta-related neural activity patterns during movement in a hippocampus-dependent working memory task and also, unexpectedly, theta oscillations and theta-related neural activity during immobility. Compared to standard theta sequences during movement, theta sequences during immobility differed in that they occurred at a shifted theta phase and preferentially represented remote locations, in particular the next choice in the working memory task. Coding for future locations was also observed during awake sharp wave ripple, but these short-lasting events occurred rarely and were biased toward frequently visited locations. Therefore, our findings suggest that recurring bouts of theta oscillations during immobility, which are also observed in primates and humans, support the cognitive demands of mental exploration in the hippocampal network and facilitate ongoing predictions of future choices.