Mef2c Controls Postnatal Callosal Axon Targeting by Regulating Sensitivity to Ephrin Repulsion

Kavli Affiliate: Alex Kolodkin

| Authors: Sriram Sudarsanam, Luis Guzman-Clavel, Nyle Dar, Jakub Ziak, Naseer Shahid, Xinyu O Jin and Alex L Kolodkin

| Summary:

Cortical connectivity is contingent on ordered emergence of neuron subtypes followed by the formation of subtype-specific axon projections. Intracortical circuits, including long-range callosal projections, are crucial for information processing, but mechanisms of intracortical axon targeting are still unclear. We find that the transcription factor Myocyte enhancer factor 2-c (Mef2c) directs the development of somatosensory cortical (S1) layer 4 and 5 pyramidal neurons during embryogenesis. During early postnatal development, Mef2c expression shifts to layer 2/3 callosal projection neurons (L2/3 CPNs), and we find a novel function for Mef2c in targeting homotopic contralateral cortical regions by S1-L2/3 CPNs. We demonstrate, using functional manipulation of EphA-EphrinA signaling in Mef2c-mutant CPNs, that Mef2c downregulates EphA6 to desensitize S1-L2/3 CPN axons to EphrinA5-repulsion at their contralateral targets. Our work uncovers dual roles for Mef2c in cortical development: regulation of laminar subtype specification during embryogenesis, and axon targeting in postnatal callosal neurons.

Read More