Kavli Affiliate: Scott Small
| Authors: Clara T Rehmann, Scott T Small, Peter L Ralph and Andrew D. Kern
| Summary:
As organisms adapt to environmental changes, natural selection modifies the frequency of non-neutral alleles. For beneficial mutations, the outcome of this process may be a selective sweep, in which an allele rapidly increases in frequency and perhaps reaches fixation within a population. Selective sweeps have well-studied effects on patterns of local genetic variation in panmictic populations, but much less is known about the dynamics of sweeps in continuous space. In particular, because limited movement across a landscape leads to unique patterns of population structure, spatial dynamics may influence the trajectory of selected mutations. Here, we use forward-in-time, individual-based simulations in continuous space to study the impact of space on beneficial mutations as they sweep through a population. In particular, we show that selection changes the joint distribution of allele frequency and geographic range occupied by a focal allele and demonstrate that this signal can be used to identify selective sweeps. We then leverage this signal to identify in-progress selective sweeps within the malaria vector Anopheles gambiae, a species under strong selection pressure from vector control measures. By considering space, we identify multiple previously undescribed variants with potential phenotypic consequences, including mutations impacting known IR-associated genes and altering protein structure and properties. Our results demonstrate a novel signal for detecting selection in spatial population genetic data that may have implications for genomic surveillance and understanding geographic patterns of genetic variation.