ELVES III: Environmental Quenching by Milky Way-Mass Hosts

Jenny E. Greene, Shany Danieli, Scott Carlsten, Rachael Beaton, Fangzhou Jiang

| Summary:

[[{“value”:”Isolated dwarf galaxies usually exhibit robust star formation but satellite
dwarf galaxies are often devoid of young stars, even in Milky Way-mass groups.
Dwarf galaxies thus offer an important laboratory of the environmental
processes that cease star formation. We explore the balance of quiescent and
star-forming galaxies (quenched fractions) for a sample of ~400 satellite
galaxies around 30 Local Volume hosts from the Exploration of Local VolumE
Satellites (ELVES) Survey. We present quenched fractions as a function of
satellite stellar mass, projected radius, and host halo mass, to conclude that
overall, the quenched fractions are similar to the Milky Way, dropping below
50% at satellite M* ~ 10^8 M_sun. We may see hints that quenching is less
efficient at larger radius. Through comparison with the semi-analytic modeling
code satgen, we are also able to infer average quenching times as a function of
satellite mass in host halo-mass bins. There is a gradual increase in quenching
time with satellite stellar mass rather than the abrupt change from rapid to
slow quenching that has been inferred for the Milky Way. We also generally
infer longer average quenching times than recent hydrodynamical simulations.
Our results are consistent with models that suggest a wide range of quenching
times are possible via ram-pressure stripping, depending on the clumpiness of
the circumgalactic medium, the orbits of the satellites, and the degree of
earlier preprocessing.”}]] 

| Search Query: ArXiv Query: search_query=au:”Fangzhou Jiang”&id_list=&start=0&max_results=10

[[{“value”:”Read More“}]]