Kavli Affiliate: Kiyoshi Masui
| First 5 Authors: Alex Reda, Tristan Pinsonneault-Marotte, Meiling Deng, Mandana Amiri, Kevin Bandura
| Summary:
The Canadian Hydrogen Intensity Mapping Experiment (CHIME) will measure the
21 cm emission of astrophysical neutral hydrogen to probe large scale structure
at redshifts z=0.8-2.5. However, detecting the 21 cm signal beneath
substantially brighter foregrounds remains a key challenge. Due to the high
dynamic range between 21 cm and foreground emission, an exquisite calibration
of instrument systematics, notably the telescope beam, is required to
successfully filter out the foregrounds. One technique being used to achieve a
high fidelity measurement of the CHIME beam is radio holography, wherein
signals from each of CHIME’s analog inputs are correlated with the signal from
a co-located reference antenna, the 26 m John A. Galt telescope, as the 26 m
Galt telescope tracks a bright point source transiting over CHIME. In this work
we present an analysis of several of the Galt telescope’s properties. We employ
driftscan measurements of several bright sources, along with background
estimates derived from the 408 MHz Haslam map, to estimate the Galt system
temperature. To determine the Galt telescope’s beam shape, we perform and
analyze a raster scan of the bright radio source Cassiopeia A. Finally, we use
early holographic measurements to measure the Galt telescope’s geometry with
respect to CHIME for the holographic analysis of the CHIME and Galt
interferometric data set.
| Search Query: ArXiv Query: search_query=au:”Kiyoshi Masui”&id_list=&start=0&max_results=10