Kavli Affiliate: Edward Chang
| Authors: Yulia Oganian, Katsuaki Kojima, Assaf Breska, Chang Cai, Anne Findlay, Edward F Chang and Srikantan Nagarajan
| Summary:
Abstract The amplitude envelope of speech is crucial for accurate comprehension. Considered a key stage in speech processing, the phase of neural activity in the theta-delta bands (1 – 10 Hz) tracks the phase of the speech amplitude envelope during listening. However, the mechanisms underlying this envelope representation have been heavily debated. A dominant model posits that envelope tracking reflects entrainment of endogenous low-frequency oscillations to the speech envelope. Alternatively, envelope tracking reflects a series of evoked responses to acoustic landmarks within the envelope. It has proven challenging to distinguish these two mechanisms. To address this, we recorded magnetoencephalography while participants listened to natural speech, and compared the neural phase patterns to the predictions of two computational models: An oscillatory entrainment model and a model of evoked responses to peaks in the rate of envelope change. Critically, we also presented speech at slowed rates, where the spectrotemporal predictions of the two models diverge. Our analyses revealed transient theta phase-locking in regular speech, as predicted by both models. However, for slow speech we found transient theta and delta phase-locking, a pattern that was fully compatible with the evoked response model but could not be explained by the oscillatory entrainment model. Furthermore, encoding of acoustic edge magnitudes was invariant to contextual speech rate, demonstrating speech rate normalization of acoustic edge representations. Taken together, our results suggest that neural phase locking to the speech envelope is more likely to reflect discrete representation of transient information rather than oscillatory entrainment. Competing Interest Statement The authors have declared no competing interest.