Kavli Affiliate: Joseph M. Thijssen
| First 5 Authors: Fatemeh Mirjani, Joseph M. Thijssen, Sense Jan van der Molen, ,
| Summary:
In molecular charge transport, transition voltage spectroscopy (TVS) holds
the promise that molecular energy levels can be explored at bias voltages lower
than required for resonant tunneling. We investigate the theoretical basis of
this novel tool, using a generic model. In particular, we study the length
dependence of the conducting frontier orbital and of the ‘transition voltage’
as a function of length. We show that this dependence is influenced by the
amount of screening of the electrons in the molecule, which determines the
voltage drop to be located at the contacts or across the entire molecule. We
observe that the transition voltage depends significantly on the length, but
that the ratio between the transition voltage and the conducting frontier
orbital is approximately constant only in strongly screening (conjugated)
molecules. Uncertainty about the screening within a molecule thus limits the
predictive power of TVS. We furthermore argue that the relative length
independence of the transition voltage for non-conjugated chains is due to
strong localization of the frontier orbitals on the end groups ensuring binding
of the rods to the metallic contacts. Finally, we investigate the
characteristics of TVS in asymmetric molecular junctions. If a single level
dominates the transport properties, TVS can provide a good estimate for both
the level position and the degree of junction asymmetry. If more levels are
involved the applicability of TVS becomes limited.
| Search Query: ArXiv Query: search_query=au:”Joseph M. Thijssen”&id_list=&start=0&max_results=3