Kavli Affiliate: Craig J. Hogan
| First 5 Authors: Craig J. Hogan, , , ,
| Summary:
A theory of position of massive bodies is proposed that results in an observable quantum behavior of geometry at the Planck scale, $t_P$. Departures from classical world lines in flat spacetime are described by Planckian noncommuting operators for position in different directions, as defined by interactions with null waves. The resulting evolution of position wavefunctions in two dimensions displays a new kind of directionally-coherent quantum noise of transverse position. The amplitude of the effect in physical units is predicted with no parameters, by equating the number of degrees of freedom of position wavefunctions on a 2D spacelike surface with the entropy density of a black hole event horizon of the same area. In a region of size $L$, the effect resembles spatially and directionally coherent random transverse shear deformations on timescale $approx L/c$ with typical amplitude $approx sqrt{ct_PL}$. This quantum-geometrical "holographic noise" in position is not describable as fluctuations of a quantized metric, or as any kind of fluctuation, dispersion or propagation effect in quantum fields. In a Michelson interferometer the effect appears as noise that resembles a random Planckian walk of the beamsplitter for durations up to the light crossing time. Signal spectra and correlation functions in interferometers are derived, and predicted to be comparable with the sensitivities of current and planned experiments. It is proposed that nearly co-located Michelson interferometers of laboratory scale, cross-correlated at high frequency, can test the Planckian noise prediction with current technology.
| Search Query: arXiv Query: search_query=au:”Craig J. Hogan”&id_list=&start=0&max_results=3