Observations of R-Process Stars in the Milky Way and Dwarf Galaxies

Kavli Affiliate: Alexander Ji

| First 5 Authors: Anna Frebel, Alexander P. Ji, , ,

| Summary:

This chapter presents an overview of the recent progress on spectroscopic observations of metal-poor stars with r-process element signatures found in the Milky Way’s stellar halo and satellite dwarf galaxies. Major empirical lessons related to the origins of the r-process are discussed, including the universality of the observed r-process pattern and deviations from universality among the light r-process elements and actinides. Different astrophysical sites of the r-process based on theoretical expectations are presented, including common and rare supernovae and neutron star mergers. A major distinguishing factor between r-process sites is their delay time distribution. The best constraints on the detailed r-process pattern come from Galactic halo r-process stars, but these cannot provide information on the environment of the stars’ birth gas clouds. Studying r-process enrichment within dwarf galaxies can remedy the situation despite the fact that high-resolution spectroscopic observations of individual stars in these systems are very difficult to obtain. A general overview of dwarf galaxy properties and chemical evolution expectations depending on their mass and star formation duration is provided. The r-process trends depend on the stellar mass and star formation durations of dwarf galaxies in a way that clearly shows that the r-process is rare, prolific, and has both prompt and delayed sources. This work complements ongoing theoretical heavy-element nucleosynthesis explorations and experimental measurements of the properties of r-process nuclei, such as with the Facility for Rare Isotope Beams.

| Search Query: arXiv Query: search_query=au:”Alexander Ji”&id_list=&start=0&max_results=3

Read More