Kavli Affiliate: Peter Fritschel
| First 5 Authors: Ish Gupta, Chaitanya Afle, K. G. Arun, Ananya Bandopadhyay, Masha Baryakhtar
| Summary:
Gravitational-wave observations by the Laser Interferometer
Gravitational-Wave Observatory (LIGO) and Virgo have provided us a new tool to
explore the universe on all scales from nuclear physics to the cosmos and have
the massive potential to further impact fundamental physics, astrophysics, and
cosmology for decades to come. In this paper we have studied the science
capabilities of a network of LIGO detectors when they reach their best possible
sensitivity, called A#, and a new generation of observatories that are factor
of 10 to 100 times more sensitive (depending on the frequency), in particular a
pair of L-shaped Cosmic Explorer observatories (one 40 km and one 20 km arm
length) in the US and the triangular Einstein Telescope with 10 km arms in
Europe. We use a set of science metrics derived from the top priorities of
several funding agencies to characterize the science capabilities of different
networks. The presence of one or two A# observatories in a network containing
two or one next generation observatories, respectively, will provide good
localization capabilities for facilitating multimessenger astronomy and
precision measurement of the Hubble parameter. A network of two Cosmic Explorer
observatories and the Einstein Telescope is critical for accomplishing all the
identified science metrics including the nuclear equation of state,
cosmological parameters, growth of black holes through cosmic history, and make
new discoveries such as the presence of dark matter within or around neutron
stars and black holes, continuous gravitational waves from rotating neutron
stars, transient signals from supernovae, and the production of stellar-mass
black holes in the early universe. For most metrics the triple network of next
generation terrestrial observatories are a factor 100 better than what can be
accomplished by a network of three A# observatories.
| Search Query: ArXiv Query: search_query=au:”Peter Fritschel”&id_list=&start=0&max_results=3