Multiwavelength Constraints on the Origin of a Nearby Repeating Fast Radio Burst Source in a Globular Cluster

Kavli Affiliate: Kiyoshi W. Masui

| First 5 Authors: Aaron B. Pearlman, Paul Scholz, Suryarao Bethapudi, Jason W. T. Hessels, Victoria M. Kaspi

| Summary:

Since fast radio bursts (FRBs) were discovered, their precise origins have
remained a mystery. Multiwavelength observations of nearby FRB sources provide
one of the best ways to make rapid progress in our understanding of the
enigmatic FRB phenomenon. We present results from a sensitive, broadband
multiwavelength X-ray and radio observational campaign of FRB 20200120E, the
closest known extragalactic repeating FRB source. At a distance of 3.63 Mpc,
FRB 20200120E resides in an exceptional location, within a ~10 Gyr-old globular
cluster in the M81 galactic system. We place deep limits on both the persistent
X-ray luminosity and prompt X-ray emission at the time of radio bursts from FRB
20200120E, which we use to constrain possible progenitors for the source. We
compare our results to various classes of X-ray sources and transients. In
particular, we find that FRB 20200120E is unlikely to be associated with:
ultraluminous X-ray bursts (ULXBs), similar to those observed from objects of
unknown origin in other extragalactic globular clusters; giant flares, like
those observed from Galactic and extragalactic magnetars; or most intermediate
flares and very bright short X-ray bursts, similar to those seen from magnetars
in the Milky Way. We show that FRB 20200120E is also unlikely to be powered by
a persistent or transient ultraluminous X-ray (ULX) source or a young,
extragalactic pulsar embedded in a Crab-like nebula. We also provide new
constraints on the compatibility of FRB 20200120E with accretion-based FRB
models involving X-ray binaries and models that require a synchrotron maser
process from relativistic shocks to generate FRB emission. These results
highlight the power that multiwavelength observations of nearby FRBs can
provide for discriminating between potential FRB progenitor models.

| Search Query: ArXiv Query: search_query=au:”Kiyoshi W. Masui”&id_list=&start=0&max_results=3

Read More