Adaptive thermal compensation of test masses in advanced LIGO

Kavli Affiliate: Michael Zucker

| First 5 Authors: Ryan Lawrence, Michael Zucker, Peter Fritschel, Phil Marfuta, David Shoemaker

| Summary:

As the first generation of laser interferometric gravitational wave detectors
near operation, research and development has begun on increasing the
instrument’s sensitivity while utilizing the existing infrastructure. In the
Laser Interferometer Gravitational Wave Observatory (LIGO), significant
improvements are being planned for installation in ~2007, increasing strain
sensitivity through improved suspensions and test mass substrates, active
seismic isolation, and higher input laser power. Even with the highest quality
optics available today, however, finite absorption of laser power within
transmissive optics, coupled with the tremendous amount of optical power
circulating in various parts of the interferometer, result in critical
wavefront deformations which would cripple the performance of the instrument.
Discussed is a method of active wavefront correction via direct thermal
actuation on optical elements of the interferometer. A simple nichrome heating
element suspended off the face of an affected optic will, through radiative
heating, remove the gross axisymmetric part of the original thermal distortion.
A scanning heating laser will then be used to remove any remaining
non-axisymmetric wavefront distortion, generated by inhomogeneities in the
substrate’s absorption, thermal conductivity, etc. A proof-of-principle
experiment has been constructed at MIT, selected data of which are presented.

| Search Query: ArXiv Query: search_query=au:”Michael Zucker”&id_list=&start=0&max_results=10

Read More

Leave a Reply